14 research outputs found

    Identifying Plant and Feedback in Human Posture Control

    Get PDF
    Human upright bipedal stance is a classic example of a control system consisting of a plant (i.e., the physical body and its actuators) and feedback (i.e., neural control) operating continuously in a closed loop. Determining the mechanistic basis of behavior in a closed loop control system is problematic because experimental manipulations or deficits due to trauma/injury influence all parts of the loop. Moreover, experimental techniques to open the loop (e.g., isolate the plant) are not viable because bipedal upright stance is not possible without feedback. The goal of the proposed study is to use a technique called closed loop system identification (CLSI) to investigate properties of the plant and feedback separately. Human upright stance has typically been approximated as a single-joint inverted pendulum, simplifying not only the control of a multi-linked body but also how sensory information is processed relative to body dynamics. However, a recent study showed that a single-joint approximation is inadequate. Trunk and leg segments are in-phase at frequencies below 1 Hz of body sway and simultaneously anti-phase at frequencies above 1 Hz during quiet stance. My dissertation studies have investigated the coordination between the leg and trunk segments and how sensory information is processed relative to that coordination. For example, additional sensory information provided through visual or light touch information led to a change of the in-phase pattern but not the anti-phase pattern, indicating that the anti-phase pattern may not be neurally controlled, but more a function of biomechanical properties of a two-segment body. In a subsequent study, I probed whether an internal model of the body processes visual information relative to a single or double-linked body. The results suggested a simple control strategy that processes sensory information relative to a single-joint internal model providing further evidence that the anti-phase pattern is biomechanically driven. These studies suggest potential mechanisms but cannot rule out alternative hypotheses because the source of behavioral changes can be attributed to properties of the plant and/or feedback. Here I adopt the CLSI approach using perturbations to probe separate processes within the postural control loop. Mechanical perturbations introduce sway as an input to the feedback, which in turn generates muscle activity as an output. Visual perturbations elicit muscle activity (a motor command) as an input to the plant, which then triggers body sway as an output. Mappings of muscle activity to body sway and body sway to muscle activity are used to identify properties of the plant and feedback, respectively. The results suggest that feedback compensates for the low-pass properties of the plant, except at higher frequencies. An optimal control model minimizing the amount of muscle activation suggests that the mechanism underlying this lack of compensation may be due to an uncompensated time delay. These techniques have the potential for more precise identification of the source of deficits in the postural control loop, leading to improved rehabilitation techniques and treatment of balance deficits, which currently contributes to 40% of nursing home admissions and costs the US health care system over $20B per year

    Postural Coordination Patterns: Visual Rotation and Translation

    Get PDF
    Recent studies have shown co-existing trunk-leg coordination patterns during quiet stance: in-phase and anti-phase for frequencies below and above 1 Hz, respectively. Two experiments investigated whether the nervous system assumes a multilinked internal model in sensory coupling? In the first experiment, we investigated the influence of the addition or removal of sensory information on these patterns. Trunk-leg coherence decreased with the addition of static vision and light touch, in the AP and ML directions, respectively, at frequencies below 1 Hz, suggesting the in-phase pattern may be more affected by neural control than the anti-phase pattern. In the second experiment, we compared translation of the visual field to a rotation relative to the ankle/hip. Gain and phase between the trunk/leg angles relative to the visual display showed only minor condition differences. The overall results suggest the nervous system adopts a simple control strategy of a single-link internal model at low frequencies

    Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    No full text
    Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids

    A Composite Porous Membrane Based on Derived Cellulose for Transient Gel Electrolyte in Transient Lithium-Ion Batteries

    No full text
    The transient lithium-ion battery is a potential candidate as an integrated energy storage unit in transient electronics. In this study, a mechanically robust, transient, and high-performance composite porous membrane for a transient gel electrolyte in transient lithium-ion batteries is studied and reported. By introducing a unique and controllable circular skeleton of methylcellulose to the carboxymethyl cellulose-based membrane, the elastic modulus and tensile strength of the composite porous membrane (CPM) are greatly improved, while maintaining its micropores structure and fast transiency. Results show that CPM with 5% methylcellulose has the best overall performance. The elastic modulus, tensile strength, porosity, and contact angle of the optimized CPM are 335.18 MPa, 9.73 MPa, 62.26%, and 21.22°, respectively. The water-triggered transient time for CPM is less than 20 min. The ionic conductivity and bulk resistance of the CPM gel electrolyte are 0.54 mS cm−1 and 4.45 Ω, respectively. The obtained results suggest that this transient high-performance CPM has great potential applications as a transient power source in transient electronics

    Experimental Investigation of High-Viscosity Conductive Pastes and the Optimization of 3D Printing Parameters

    No full text
    Traditional contact printing technology is primarily controlled by the shape of the mask to form the size, while for the more popular non-contact printing technologies, in recent years, adjusting the print parameters has become a direct way to control the result of the printing. High-viscosity conductive pastes are generally processed by screen printing, but this method has limited accuracy and wastes material. Direct-write printing is a more material-efficient method, but the printing of high-viscosity pastes has extrusion difficulties, which affects the printed line width. In this paper, we addressed these problems by studying the method of printing high-viscosity conductive paste with a self-made glass nozzle. Then, by parameter optimization, we achieved the minimum line width printing. The results showed that the substrate moving speed, the print height, and the feed pressure were the key factors affecting the line width and stability. The combination of the printing parameters of 0.6 MPa feed pressure, 200 mm/s substrate moving speed, and 150 μm print height can achieve a line width of approximately 30 μm. In addition, a mathematical model of the line width and parameters was established, and the prediction accuracy was within 5%. The results and the prediction model of the parameters provide an important reference for the printing of high-viscosity pastes, which have immense potential applications in electronics manufacturing and bioprinting

    Zoledronic Acid Regulates Autophagy and Induces Apoptosis in Colon Cancer Cell Line CT26

    No full text
    Zoledronic acid (ZOL) is the third generation of bisphosphonates, which can inhibit many tumors growth, especially to inhibit the growth of colon cancer. However, the molecular mechanism is still very mysterious. In this study, we observed that ZOL could regulate CT26 colon cancer cells autophagy, promote CT26 cells apoptosis, and inhibit CT26 cells proliferation. Western blotting analysis showed that proapoptosis protein caspase-3 was basically unchanged, whereas the expression of the activated caspase-3 was significantly increased, after CT26 cells were treated with different doses of zoledronic acid. Western blot also showed that ZOL could significantly affect the expression of p-p53 and autophagy-related proteins beclin-1 and p62. In conclusion, the antitumor effect of ZOL on CT26 colon cancer cells in vitro is achieved by apoptosis induction and autophagy regulation, resulting in inhibition of cell proliferation

    Self-Powered and Autonomous Vibrational Wake-Up System Based on Triboelectric Nanogenerators and MEMS Switch

    No full text
    With the extensive application of wireless sensing nodes, the demand for sustainable energy in unattended environments is increasing. Here, we report a self-powered and autonomous vibrational wake-up system (SAVWS) based on triboelectric nanogenerators and micro-electromechanical system (MEMS) switches. The energy triboelectric nanogenerator (E-TENG) harvests vibration energy to power the wireless transmitter through a MEMS switch. The signal triboelectric nanogenerator (S-TENG) controls the state of the MEMS switch as a self-powered accelerometer and shows good linearity in the acceleration range of 1–4.5 m/s2 at 30 Hz with a sensitivity of about 14.6 V/(m/s2). When the acceleration increases, the S-TENG turns on the MEMS switch, and the wireless transmitter transmits an alarm signal with the energy from E-TENG, using only 0.64 mJ. Using TENGs simultaneously as an energy source and a sensor, the SAVWS provides a self-powered vibration monitoring solution for unattended environments and shows extensive applications and great promise in smart factories, autonomous driving, and the Internet of Things

    Recent Progress of Switching Power Management for Triboelectric Nanogenerators

    No full text
    Based on the coupling effect of contact electrification and electrostatic induction, the triboelectric nanogenerator (TENG) as an emerging energy technology can effectively harvest mechanical energy from the ambient environment. However, due to its inherent property of large impedance, the TENG shows high voltage, low current and limited output power, which cannot satisfy the stable power supply requirements of conventional electronics. As the interface unit between the TENG and load devices, the power management circuit can perform significant functions of voltage and impedance conversion for efficient energy supply and storage. Here, a review of the recent progress of switching power management for TENGs is introduced. Firstly, the fundamentals of the TENG are briefly introduced. Secondly, according to the switch types, the existing power management methods are summarized and divided into four categories: travel switch, voltage trigger switch, transistor switch of discrete components and integrated circuit switch. The switch structure and power management principle of each type are reviewed in detail. Finally, the advantages and drawbacks of various switching power management circuits for TENGs are systematically summarized, and the challenges and development of further research are prospected

    Study on Ability of Undergraduate Scientific Research

    No full text
    corecore